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ABSTRACT 
 
Retinal Nerve Fiber Layer Defect (RNFLD) can be an 
earliest sign to detect the ongoing glaucomatous damage. 
However, existing measurements, including visual field 
test and optic cup/disc ratio, fail to reflect RNFLD. 
Although optical coherence tomography (OCT) may 
provide information about RNFLD, the field of view 
(FOV) of OCT is smaller than that of fundus camera. This 
means early RNFLD may be undetected by OCT. In 
order to screen out patients with early-stage glaucoma, 
we propose to build a deep neural network to both predict 
glaucoma and locate RNFLD in fundus image by 
constraining its latent space with visual field map (VFM), 
which has wider FOV than fundus image and indicates 
visual field loss led by RNFLD. Since VFM does not 
match fundus image at pixel level, the challenge of this 
net-work would be to learn the spatial relationship 
between fundus image and VFM in addition to the 
prediction of glaucoma. To tackle this challenge, we 
compared three encoder-decoder convolutional neural 
network (CNN) with distinctive architectures in this 
study: (i) encoder-decoder CNN, (ii) encoder-decoder 
CNN with spatial transformer network (STN) and (iii) 
generative adversarial network (GAN), whose generator 
is the same as (i). The main evaluation metrics in this 
study was the correlation coefficient between predicted 
VFM and real VFM. Be-sides, accuracy and AUC of each 
network for the prediction of glaucoma were measured to 
make sure the predicted VFMs were closely related to 
glaucoma. The study was conducted on the dataset we 
collected from a medical center. Our results 
demonstrated that the correlation coefficient produced 
from model (iii) was the highest and it also did well in 
the prediction of glaucoma. This proposed network 
would be the first one to predict glaucoma and locate 
RNFLD simultaneously to provide explainable results for 
ophthalmologists and address the pixel-level mismatch 
between fundus images and VFM. 
 
Keywords: Retinal Nerve Fiber Layer Defect, Glaucoma, 
Generative Adversarial Network. 
 

1. INTRODUCTION 
 
Glaucoma, which is characterized by the progressive 
optic neuropathy, is the second leading cause of 
irreversible blindness, and Asia would become the top 
three areas affected the most [1, 2]. Although the 
blindness resulting from glaucoma is preventable by 
early detection and treatments [3], existing devices and 
measurements were not feasible to detect the early 
indicator of Glaucoma, namely retinal nerve fiber layer 
defect (RNFLD), particularly for large-scale population 
screening. To deal with this problem, a feasible 
measurement for RNFLD in large-scale screening is 
imperative. 
 
Fundus camera (FC) is considered as a more economical 
device for large-scale screening [4], and optic cup-to-disc 
ratio (C/D ratio) is the most common indicator derived 
from fundus image by an ophthalmologist. During 
screening, a suspect with C/D ratio more than 0.8 would 
be referred to ophthalmology clinic for in-depth 
evaluation by optical coherence tomography (OCT) [5] 
and visual field test (VFT) [6]. However, C/D ratio may 
be an indirect indicator for RNFLD and its modest inter-
rater and intra-rater variability may affect its reliability [7, 
8]. This could lead to delayed diagnosis of glaucoma. A 
new measurement derived from fundus image for 
RNFLD should be developed for the need of early 
detection. 
 
While OCT and VFT provide valuable information about 
RNFLD and the consequent visual field loss, their cost 
and test duration are high in comparison with those of FC. 
Specifically, OCT is used to measure the thickness of 
retinal layers of fundus [5]. This reflects RNFLD directly 
but it is not cost-effective in large-scale screening. On the 
other hand, VFT is used to detect visual field loss led by 
RNFLD. The visual field map (VFM) generated by VFT 
is the direct revelation of whether specific part of optic 
nerve reacts to incoming lights [6], indicating RNFLD as 
well. Since it takes al-most thirty minutes to complete 
VFT, it is not feasible for large-scale screening. To locate 
RNFLD in fundus image reliably, a possible method 



would be to establish the mapping from fundus image to 
VFM or thickness map from OCT. As VFM has larger 
field-of-view (FOV) than fundus image (Fig. 1), our 
proposed method aimed to map fundus image to VFM by 
a deep neural network (DNN). As a result, the location of 
RNFLD in fundus image could be inferred from the 
predicted VFM of DNN. 
 
The major challenge in establishing the mapping between 
fundus image and VFM is the mismatch at pixel level 
between these two images. VFM is a machine-generated 
grid with equal space between vertices, while fundus 
image is the one which the dis-tance between pixels do 
not correspond to the real distance in fundus. That is, 
fundus image could be considered a distorted image from 
VFM. Due to this mismatch, the mapping from fundus 
image to its corresponding VFM may be difficult to learn.  
 
In this study, we compared three distinctive encoder-
decoder convolutional neural network (CNN) to tackle 
the aforementioned challenge. First, an encoder-decoder 
CNN was constructed as the baseline to learn such 
mapping. Second, in order to learn the mapping explicitly, 
a spatial transformer network (STN) is added to the 
encoder-decoder CNN to transform predicted VFMs. At 
last, a generative adversarial network (GAN) is proposed, 
whose generator is the same as the encoder-decoder CNN 
mentioned in the above two and discriminator is a 
common CNN, to tackle the challenge. 
 

 

 

Fig. 1. Examples of fundus images and their corresponding 
visual field maps (VFM). The field of view (FOV) of VFM is 
60 degree while the FOV of fundus image is 45 degree. Note 

that VFM was vertically flipped from its original VFM to 
match the orientation of fundus image. 

1.2 Related Work 
 

In order to detect suspects with glaucoma via fundus 
camera in large-scale population screening, a CNN based 
on inception-v3 architecture was developed to predict 
glaucoma with fundus image as input [9]. The result 
showed the area under receiver operator characteristic 
curve (AUC) achieved 0.986 with sensitivity of 95.6% 
and specificity of 92.0%. Despite of its effectiveness in 
screening suspects of glaucoma, the model did not 
provide explainable results for why each suspect was 
predicted as glaucoma. Furthermore, similar research, 
which focused on the analysis of the heatmaps generated 

from CNN, indicated that the optic disc area was the most 
important area for the prediction of glaucoma [10]. 
Inferred from these results, CNN models trained only on 
fundus images for glaucoma may predict suspects with 
early RNFLD as non-referable glaucoma because early 
RNFLD usually appears at regions near macula and away 
from optic disc.  
 
Recently, a study demonstrated the performance of a 
model predicting the thickness of RNFL around optic 
disc with fundus images as input [11], which was trained 
on fundus images paired with thickness maps from 
spectral-domain OCT (SD-OCT). Although it was 
promising for the quantification of RNFLD in fundus 
image, the FOV of SD-OCT was too small to detect 
suspects with RNFLD away from optic disc. To screen 
suspects with early RNFLD with fundus images, the FOV 
from the ground truth (either VFT or OCT) of RNFLD 
should be larger than fundus images. 
The main objective of this study was to develop an 
encoder-decoder CNN which would be trained on fundus 
images paired with corresponding VFMs to locate 
RNFLD in addition to the prediction of glaucoma. With 
this model, the screening for early-stage glaucoma in 
large-scale population would be achieved. 
 

1.3 Contribution 
 

The contributions of this study can be summarized as 
follows: (i) Proposing a deep learning model to locate 
RNFLD in fundus images with VFMs for the first time. 
(ii) Addressing the pixel-level mismatch between fundus 
images and VFMs by using GAN. (iii) Reducing the 
burden of annotation on ophthalmologists by using 
VFMs as annotations for RNFLD in fundus images. 

2. Method 

2.1 Data Collection and Preprocessing 

Currently, there is no available open dataset containing 
fundus images paired with their corresponding VFMs. To 
collect such pairs, this study was first approved by the 
local institutional review board (IRB) of Chung-Ho 
Memorial Hospital Kaohsiung Medical University in 
Taiwan (KMUHIRB-E(I)-20180241). Then, there were 
740 fundus images (produced by KOWA Nonmyd 7) 
paired with their VFMs (produced by Carl Zeiss Meditec 
HFA II, 2007) collected retrospectively from 351 
subjects. The included subject was either the individual 
diagnosed with glaucoma or the one with healthy fundus 
and visual field. Among 740 pairs, there were 445 pairs 
from the glaucoma subjects and 295 pairs from subject in 
healthy condition.  



 
To evaluate the generalizability of the proposed models, 
5-fold cross validation was applied during modeling. 
That is, each fold included 20% of 351 subjects. In each 
training, four folds of data were treated as training dataset 
and the rest of data was validation dataset. 

 

Fig. 2. Preprocessed fundus images and VFMs. The pair (A) 
on the right is from the subject with glaucoma. The other pair 

(B) on the left is from the subject without any significant 
visual field deficit. The size of original fundus image were 
2144 x 1424. The preprocessed fundus images and VFMs 

were resized to 512 x 512. 

To deal with the color variability in fundus image and 
make retinal nerve fiber more perceivable, three contrast 
limited adaptive histogram equalization (CLAHE) [12] 
with in-between Gaussian smoothing were applied on 
every fundus image in the dataset. Two examples were 
illustrated in Fig. 2.  
 
As for VFM, following steps were conducted in sequence 
to get a VFM in gray scale: (i) Gaussian blur with kernel 
size of 30 x 30. (ii) Dilation with kernel size of 5 x 5 
following a Gaussian blur with kernel size of 30 x 30. (iii) 
Erosion with kernel size of 5 x 5 following a Gaussian 
blur with kernel size of 10 x 10. (iv) Reversal of black 
and white. These steps were to remove single black dots 
in VFM, which were not related to visual field deficits, 
and to ensure that gray regions related to RNFLD were 
kept. The final step was to represent regions related to 
RNFLD with brighter pixel values. 

2.2 Model Architectures 

The architectures of the three proposed models were 
demonstrated in Fig. 3. The encoder part of the model (i) 
had same structure as part of the inception-v3 
architecture (from first layer to 6e layer) described in this 
paper [13]. Then, four consecutive convolution modules, 
which constituted the decoder, were applied to the feature 

maps generated from the encoder. Each module was 
mainly comprised of a dropout layer, a convolutional 
layer with kernel size of 7 x 7, a batch normalization 
layer, an activation layer of leaky Rectified linear unit 
(leaky ReLU) and an upsampling layer. The depths of the 
feature maps from these four modules were 144, 72, 36 
and 4 respectively, and the sizes of these maps were 64, 
128, 256 and 512. With this decoder, a gray image was 
generated by its last layer (an additional convolution 
layer with kernel size of 7 x 7) and a sigmoid function 
was further applied to the generated image to map its 
pixel values to values between 0 and 1. The final output 
was regarded as the predicted VFM.  
 
In addition to the prediction of VFM, the prediction of 
glaucoma was done by the same model. That is, a fully 
connected layer with a sigmoid function was 
concatenated on the feature vector produced by an 
average pooling layer applied on the feature maps from 
the decoder. By training this model to predict glaucoma 
and VFM simultaneously, the feature vector would be the 
representative of RNFLD, which is the cause of visual 
field loss and consequent glaucoma. 
 
Building on model (i), model (ii) included a STN [14], 
which aimed to learn the spatial relationship between 
fundus images and VFMs. The detail of this STN is 
described in Fig. 3. Following this design, the affine 
matrix was derived from the predicted VFM. Then, a grid 
sampler was applied to sample the predicted VFM with 
its corresponding affine matrix to get the transformed 
map, which was the final output. 
 
In model (iii), a discriminator, which followed inception-
v3 architecture, was used to facilitate the generator to 
produce VFMs as similar as the real VFMs. This 
generator was the same model as model (i).  

2.3 Evaluation Metrics 

To evaluate the similarity between predicted VFMs and 
real VFMs, Pearson correlation coefficient (r) and dice 
coefficient (Dice) were calculated for each predicted 
VFM and real VFM. For the calculation of Dice, a binary 
thresholding with 0.5 was first applied to both predicted 
VFMs and real VFMs. Then, equation (1) for Dice was 
calculated for each predicted VFM and real VFM. 
Moreover, the evaluation metrics for the prediction of 
glaucoma included accuracy and AUC score. 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋,𝑌𝑌) =  2 |𝑋𝑋∩𝑌𝑌|
|𝑋𝑋||𝑌𝑌|    (1) 



Fig. 3. The proposed model architectures.

2.4 Implementation Details 

To optimize both the prediction of VFMs and that of 
glaucoma, the losses produced by correlation coefficient 
(1 – r) and dice coefficient (1 – Dice) were computed and 
combined with the binary cross entropy (BCE) loss 
calculated for the prediction of glaucoma. During 
training, the loss from dice coefficient would be weighted 
by 0.05 in order to facilitate these models to learn more 
about the spatial correlation than the exact match at pixel 
level. 
 
As for model (iii), the loss from the generator was 
calculated with BCE, indicating how well the predicted 
VFMs from the generator could cheat the discriminator. 
This loss was added to the decoder loss described above. 
On the other hand, the discriminator loss was the sum of 
the two binary cross entropy, one for how well it made 
right judgement and the other for how well it classified 
predicted VFMs as fake VFMs. During training, the 
generator loss with decoder loss was optimized following 
the discriminator loss. 
 
In each training for cross validation, hyper-parameters 
were set as following: (i) Number of epoch: 3000 (ii) 
Learning rate: 0.0005 (iii) Batch size: 32 (iv) Dropout 
rate: 0.3 (v) Adam optimizer with beta1 set to 0.9 and 
beta2 set to 0.999. The results from 5 validation sets 
would be averaged. These experiments were conducted 

using Pytorch (version 1.0.0) with two NVIDIA GTX 
1080Ti GPU. 

3. Results and Discussions 

Table 1 shows the performance of these three models on 
validation dataset. The model (iii) had the highest r 
(0.7283, moderate-to-high correlation) and Dice over the 
other two models. This may indicate that using GAN to 
tackle the mismatch at pixel level between fundus images 
and VFMs would be better than using STN to learn the 
affine transformation between them. Moreover, despite 
of similar accuracy in these models, the model (iii) 
achieved the highest AUC, suggesting that model (iii) 
might be more capable of detecting glaucoma suspects 
out of general population.  

Table 1. Averaged cross validation results.  

Model r Dice Accuracy 
(%) 

AUC 
 

(i) 0.6940 0.5473 88.52 0.8852 
(ii) 0.6931 0.5438 90.98 0.9165 
(iii) 0.7283 0.5772 89.34 0.9593 

 
The spatial relationship between fundus images and 
VFMs may be a non-linear relationship. Compared 
model (ii) with model (i), STN seemed to have no effect 
on either r or Dice. This suggested that affine 
transformation, which is also a linear transformation, was 



insufficient to describe the spatial relationship between 
fundus images and VFMs. In contrast, model (iii) 
achieved better performance than model (i), indicating 
that such spatial relationship could be addressed by 
facilitating the model, particularly the generator, to 
simulate the pixel distribution in VFMs. The spatial 
relationship might be a non-linear spatial relationship.  
 
With encoder-decoder CNN or even GAN, the model 
could learn to predict glaucoma based on the features 
related to RNFLD. Inferred from the results, it seemed 
that model would have higher ability (by AUC) to 
discriminate between individuals with glaucoma and 
those without glaucoma as it could better locate RNFLD 
(by r and Dice). This further suggested that VFMs could 
serve as a guide for the model to focus on the features 
related to RNFLD quickly with comparably limited 
dataset. Via this training method, the model could 
provide explainable results to ophthalmologists for large-
scale screening, reduce the burden on annotating RNFLD 
manually on fundus images and possibly reduce the need 
to collect hundreds of thousands pairs of data.  

4. Conclusion 

In this study, we demonstrated the potency of GAN to 
tackle the mismatch at pixel level between fundus images 
and VFMs, and showed its ability to guide the model to 
learn features related to RNFLD.  With GAN, it may 
indicate that unsupervised learning on these pairs of data 
would be possible in the future. This would further 
reduce the burden both on ophthalmologists and 
researchers who need to pair each fundus image with its 
VFM. In addition, this explainable model could be 
applied in large-scale population screening to detect 
suspects with early RNFLD which is not located near 
optic disc. This would ultimately increase the screening 
rate of suspects with early-stage glaucoma and prevent 
them from blindness. More data would be included to 
validate these results.  
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