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ABSTRACT 
 
Due to the fact that retinal nerve fiber layer defect in 
Glaucoma is not perceived by patients at early stage, a 
technique to monitor the progress of retinal nerve fiber 
layer defect is imperative. Currently, the tools or 
parameters, such as standard automated Perimetry and 
the cup-to-disc ratio derived from fundus images, can 
only screen out the glaucomatous patients whose 
ganglion cells in optic nerve have already lost about 50%. 
It would be meaningful to clinicians if the loss of optic 
nerve could be quantified in the early stage efficiently. 
For this purpose, the fundus images, which has a 45° field 
of view and encircle most of the optic nerve, should be 
leveraged and a deep learning-based algorithm should be 
developed to measure the RNFL defect. In this paper, the 
feasibility of early detection for retinal nerve fiber layer 
defect with fundus images in glaucoma patients is 
demonstrated. We built up a deep learning model to 
detect glaucomatous patients from healthy subjects with 
fundus images. The accuracy of the deep learning model 
for classification of Glaucoma patients was 90% and it 
could be seen that the model treated the features relevant 
to the retinal nerve fiber layer defect as the essential ones 
for discriminating glaucoma patients. From this 
experiment, it is promising to measure the severity of 
RNFL defects and locate them efficiently with fundus 
images and deep learning algorithms. Future studies 
would focus on development of an accurate deep 
learning-based algorithm, which may take visual field 
data as reference or labels, for retinal nerve fiber layer 
defect quantification.  
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1. INTRODUCTION 
 
Glaucoma, characterized by the progressive optic 
neuropathy, is the second leading cause of irreversible 
blindness [1, 2]. According to the research [3], the 
Glaucoma prevalence was 3.54% and its population 
would increase to 111.8 million in 2040. Particularly, 
Asia would be the top three areas affected the most then. 

The blindness from glaucoma, however, is preventable 
by early detection and treatments [4], which would 
further relieve the burden on national health expenditure. 
Yet promising, the development of techniques for early 
detection of Glaucoma is challenging in terms of the 
evaluation of the early optic nerve defect. To ameliorate 
and further prevent the blindness led by Glaucoma, a 
feasible and reliable technique for early detection of 
Glaucoma is still imperative. 
 
In clinics, Perimetry, namely visual field test, and optical 
imaging are the major techniques to evaluate the 
functional and structural integrity of the optic nerve, 
serving as the basis for the diagnosis of Glaucoma. 
Standard Automated Perimetry (SAP), a type of 
Perimetry, is the gold standard for measuring the function 
of optic nerve. It is crucial for the diagnosis of Glaucoma 
due to its direct revelation of whether specific part of 
optic nerve still reacts to the incoming lights from the 
Perimetry or not [5]. Despite its decisive role in the 
diagnosis, it fails to reflect the structural changes, which 
precedes the functional loss, to the optic nerve, 
specifically the retinal nerve fiber layer (RNFL) [6]. 
Therefore, the optic imaging techniques, including 
optical coherence tomography (OCT) and fundus 
photography, would take an essential role in detecting the 
structural change, which is the sign for the early stage of 
Glaucoma. With the advent of OCT, the cross-sectional 
images of the retina can be retrieved and the thickness of 
the RNFL would be able to quantize accordingly [7]. 
While providing those benefits, OCT has a comparatively 
narrower field of view than fundus photography. That is, 
fundus photography would provide ophthalmologists 
with a more comprehensive view of the structural defect 
of RNFL. Considering the uncertainty of the region 
where the RNFL defect would occur, fundus 
photography, hence, would be the better option for early 
detection of Glaucoma than OCT. 
 
Fundus photography would act as a feasible and effective 
way to detect the early defect of the RNFL. Common 
digital fundus image (DFI), derived from fundus 
photography, has a field of view (FOV) about 45° and 



covers the most essential anatomical structures, including 
optic disc (OD) and macula [8]. With these two in the 
FOV, it could be inferred that most of RNFL appears in 
fundus image as well. Traditionally, for diagnosis of 
Glaucoma in clinics, an indicator, called cup-to-disc ratio 
(C/D Ratio), is subjectively derived by ophthalmologists 
from a fundus image. A normal cup-to-disc is about 0.3 
and it would suggest a greater possibility of Glaucoma as 
its value increase. Although it served as a widely used 
measurement, it had a greater inter-rater and intra-rater 
variability [9, 10]. Moreover, it failed to reflect the early 
development of Glaucoma in fundus image, whose 
RNFL gradually loses. Besides C/D Ratio, Inferior 
Superior Nasal Temporal (ISNT) rule, inferior-superior-
nasal-temporal rule in specific, also helps 
ophthalmologists measure the change of the region 
between the optic disc and optic cup (OC) [11]. However, 
it suffered from the same problem encountered in 
application of C/D Ratio, unable to detect the early 
development of Glaucoma. To address this problem, a 
indicator measuring RNFL in fundus image should be 
established. A few studies attempted to measure the 
fundus texture in image, but they did not correspond to 
the loss of RNFL [12]. Furthermore, since it not easy to 
detect all the loss of RNFL in fundus image by human 
eye due to various image quality, other ground truth for 
loss of RNFL, such as visual field data, and a more robust 
algorithm should be leveraged to quantify RNFL. 
 
Deep Neural Network (DNN), a contemporary modeling 
technique in computer vision, could help quantize the 
integrity of the retinal nerve fiber layer through 
supervised learning. By directly learning how to bridge 
the gap between input images and corresponding labels, 
convolutional neural network (CNN) has achieved state-
of-art results in image classification [13]. As mentioned 
before, a quantifiable method for RNFL is in need. With 
the advantage of CNN, it would be possible to discover 
RNFL in fundus image given the appropriate ground 
truth is provided. Visual field data, indicating the location 
of RNFL defect, would take an essential role as the 
ground truth for RNFL defect in fundus image. 
Nevertheless, there is few researches on mapping these 
two categories of data and building a model to learn the 
RNFL loss in fundus image supervised by visual field 
data.  
 
This paper was organized as follows. The related 
researches were discussed in section 2. Section 3 
describes the proposed neural network architecture and 
how to detect Glaucoma with RNFL in DFIs.  About the 
experimental results were revealed in Section 4. 
Conclusions about this paper were given in the last 
Section.  
 

2. LITERATURE REVIEW 
 

In clinics, the relationship between optic disc and cup in 
DFIs is one of the assessment that could screen out 

Glaucomatous patients, there were five indexes to 
describe that relationship, C/D Ratio, ISNT rule, Disc 
damage likelihood Scale (DDLS) and Glaucoma risk 
index (GRI). Haleem, Muhammad Salman, et al[14] 
carried out critical estimations of existing automatic 
extraction approaches based on the features comprising 
of C/D Ratio, RNFL, and PPA (Parapapillary Atrophy) 
among others.   
 
C/D Ratio is the most common approach used by 
ophthalmologists to screen out Glaucomatous patients 
with fundus images. However, it is too difficult to 
annotate the OD and OC. Thomas proposed an algorithm 
based on mathematical morphology for detecting the OD 
and OC [15]. OD is the brightest region in DFIs. They 
used thresholding with morphological techniques to 
detect the OD. First, they found the position 
approximately. Secondly, extract the contours via the 
watershed transformation. However, it was not able to 
handle all the DFIs especially in low contrast.  
 
Issa et al.[16] presented an adaptive thresholding 
technique for segmentation of OD and OC based on the 
features extraction from DFIs. Optic nerve head region is 
in both red and green channel. Hence, the image was split 
into red and green channel. Threshold was determined 
from the preprocessed image after the smoothed 
histogram. OD/OC was segmented from the red channel 
and green channel respectively. The proposed algorithm 
achieved the accuracy of 92.06% and each image took 
around 3.313 seconds, but this was not workable for all 
DFIs. Authors mentioned if the images were in the 
presence of PPA, the segmentation performance would 
decrease because only brighter pixels would be threshold.  
 
Recent years, DNN became more and more popular, 
especially CNN. Zilly et al. [17], they use an ensemble 
learning based architecture to learn the convolutional 
filters and proposed a novel entropy sampling method to 
reduce its computational effort. They only used around 
50 images to train the CNN model. Experimental result 
revealed that under the same number of samples, entropy 
sampling achieved superior result to uniform sampling.  
 
In general, the more images for training, the better 
performance of CNN models. However, Raghavendra 
only used 1,462 DFI and the eighteen-layer CNN to their 
proposed CAD, achieved accuracy of 98.13%, sensitivity 
of 98% and specificity of 98.3%[18]. Experimental 
results demonstrate the robustness of the system, which 
can be used as a supplementary tool for the clinicians to 
validate their decisions. 
 
Before the visual field defect begins, the ganglion cells 
have already loss about 50%. Hence, the estimation of the 
changes in RNFL can be referred to a method for the 



early diagnosis and treatment of glaucoma [19]. They are 
very expensive by using OCT and GDx offering RNFL 
assessment. Furthermore, they require very careful 
interpretation by experts. Last but not least, these 
imaging techniques are not feasible solution for mass 
screening and routine checkup of glaucoma in peripheral 
settings. RNFL and retina cup enlargement are the early 
signs that can be found on the DFI as well. As the result, 
fundus images provide a practical solution for accurate 
and efficient glaucoma risk assessment [20].  
 
In 2017, Watanabe et al. proposed a multi-steps solution 
to detect RNFL, included Gabor filter, clustering, and 
adaptive thresholding [21]. The number of false positives 
was too large because of too many rules. They used the 
deep convolutional neural network with deconvolutional 
layer to train the model to detect RNFL regions. It 
revealed that CNN was able to learn the features and 
achieved almost the same effectiveness for RNFL 
detection as by the means of SVM. 
 
This paper aims to demonstrate the feasibility of the 
quantification of RNFL defect in fundus images with 
deep learning techniques. For the details about the 
proposed method would be discussed in the next chapter. 
 
 

3. METHODOLOGY 
 
3.1 Training Dataset 
High-Resolution Fundus (HRF) Image Database [22] 
was chosen as the training dataset. There were 15 images 
of healthy patients, 15 images of patients with diabetic 
retinopathy (DR) and 15 images of glaucomatous 
patients. In this study, only the images of healthy and 
glaucomatous patients were included for further 
modeling and analysis. 
 
3.2 Model Architecture 
To discover features relevant to the diagnosis of 
Glaucoma, convolutional neural network (CNN) is used. 
The structure of CNN is shown in Fig. 1, mainly 
consisting of 6 convolution blocks. Each convolution 
block is a convolution kernel followed by an activation 
layer. ReLU is the activation function in this case. 

Moreover, max pooling layers are inserted following the 
first 3 convolution blocks to reduce the dimensionality 
and extract high-level features. To generate the logits 
from this CNN, global average pooling layer is used to 
condense the output from last convolution block and then 
a 1x1 convolution kernel is applied. Then, the logits 
would be transformed into class probability by sigmoid 
function.  
 
As the main purpose is to investigate the feasibility of the 
quantification of RNFL, a visualization technique for 
CNN is applied to show whether a well-trained CNN 
would take RNFL defect as an indicator for Glaucoma. 
The implementation of this visualization technique 
follows the class activation map proposed by Zhou et al 
[23]. This visualization is achieved by calculating the 
weighted sum of the feature maps rendered by the last 
convolution block. The weights of each feature map are 
the importance of each global averaged feature to the 
class. In this case, these suggest the importance for 
diagnosis of Glaucoma. 
 
3.3 Evaluation Metrics 

 
To determine the performance of the trained model in this 
paper, four parameters were used: accuracy (ACC), 
specificity (SP), sensitivity (SE) and precision (PRC). 
The mathematical equation for each metric is described 
in the following:   
 

        Sensitivity (SE) = TP/ ሺሺTP൅FNሻሻ               ሺ1ሻ 
Specificity (SP) = TN / (TN+FP))              (2) 

Accuracy (ACC) = (TP+TN) / (TP+FN+TN+FP))  (3)  
Precision (PRC) =TP / (TP+FP)             (4) 

 
3.4 Training and Testing Details 
For all 30 images included, 20 images were used for 
training, 10 images drawn from healthy patients and the 
others from glaucomatous patients. The rest of images 
were used for testing and investigating the possible 
features for diagnosis of Glaucoma. 

Fig. 1 Proposed systematic neural network architecture 



During training, the parameters were tuned to prevent the 
model from overfitting. For that purpose, learning rate, 
dropout rate and L2-regularization weight were set to 
0.001, 0.3 and 0.00005 respectively. Moreover, Adam 
optimizer was used for updating all the weights in the 
model.  
 
As to testing, ACC, SE, SP and PRC were calculated 
from the predictions of the rest 10 images. The results is 
shown in the next section. 
 

 
4. EXPERIMENTAL RESULT 

 
Table 1: Model Performance.  

ACC SP SE PRC 

90% 80% 100% 83.33% 

SE: Sensitivity, SP: Specificity, ACC: Accuracy, PRC: Precision 

 
The result of model performance is shown in Table 
[Table 1]. The overall testing accuracy (ACC) is 90%, 
and specificity (SP) and sensitivity (SE) are 80% and 
100% respectively. In testing, 5 images from 
glaucomatous patients were correctly classified, but there 
was 1 image from healthy subject misclassified as 
glaucoma, resulting in the lower SP.  
 
Although this trained model may not fully learn what the 
general features of glaucoma are in fundus images due to 
lack of large dataset, it is still promising to investigate 
how this model acquired the general features among the 

training and testing images. Two pairs of the fundus 
image and its corresponding class activation map were 
shown in Fig. 2. From these two activation maps, it could 
be seen that the activation regions, which were painted as 
bright regions, not only surrounded the optic disc but also 
appeared in peripheral regions, especially the ones along 
the blood vessels. As the optic nerves extend along blood 
vessels from the optic disc, this may indicate that the 
trained model learned to use RNFL defect as one of the 
decisive features for the diagnosis of Glaucoma. Since 
the RNFL defect may be defected in fundus images with 
CNN, the development of algorithms to quantify the 
severity of RNFL defect with fundus images is possible. 
 

5. CONCLUSION 
 

With deep learning techniques, it is possible to 
automatically quantify the RNFL defect in fundus 
images. For the future purpose to determine the severity 
and locations of RNFL defect in fundus images 
accurately, the visual field data, treated as labels, would 
be introduced in the modeling process. As a deep learning 
model could acquire the knowledge for locating the 
RNFL defect efficiently, it would be of much help for 
ophthalmologists in clinics.  
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Fig. 2 Pairs of the fundus image and its corresponding class activation map 
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